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Classification of oscillators in the Hessenberg-matrix 
representation 

Miloslav Znojilt 
D e p m e n r  of Theoretical Nuclear Physics, Inst Nucl. Physics, Academy of Sciences, 
250 68 ReE. Czech Republic 

Received 24 November 1993 

Abstract. For an arbitrary finite and nM too singular (presumably, phenomenological) 
superposition of potentials r6 with ntional exponents we solve the old problem of conversion 
of the corresponding differential ScMdinger bound-state problem into its marrix equivalent 
with the minimalized number L of non-zero diagonals. The construction-with p m f s i s  
performed via the standard power-series method in its non-Hermitean matrix (sometimes called 
Hill-determinant) version. All the simplest and (in this sense) 'algebraizable' interactions are 
then displayed up to L = 5. An example of application in perturbation theory is included. 

1. Introduction and summary 

The harmonic-oscillator Hamiltonians 

with f > -: and gz t 0 and/or their 'Schwinger' duals H(cou'omb) (with the force 
g z r 2  replaced by a Coulombic attraction -e21rl-t 111) are exceptional. All their bound- 
state energies E.,r and wavefunctions $rn,l(r) are known and are elementary functions of 
couplings and of the quantum numbers e = 0, 1, . . . (angular momentum) and n = 0.1,. . . . 
Some of their most immediate generalizations 

r = IrI - 2 < 6, < 62 < ' ' ' < 6, 

remain easily tractable perturbatively, due to the extreme simplicity of their zero-order 
harmonic or Coulombic reductions. 

In what follows, we are going to study all the latter, phenomenologically extremely 
useful [2] oscillators (1). In a non-perturbative regime, i.e. at all the values of their 
couplings, we shall work within the framework of the so-called Hill-determinant method [3]. 
Its formulae which cannot be safely used without simple though rigorous proofs [4] have 
offered one of the best possible quasi-analytic descriptions for many not too complicated 
systems. Equation (1) provides a good as well as an important further candidate for such 
an application. 
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Our basic motivation stems from the enormous phenomenological appeal [SI and 
descriptive universality, elementarity and flexibility of the power-law superpositions (1). 
Nevertheless, our work is also inspired formally. Indeed, the non-perturbative Hill- 
determinant method, being essentially non-variational, is not without specific problems 
itself. Seemingly highly intuitive and clear, its application requires careful mathematical 
foundations. Moreover, some of the problems with Hill determinants seem to have a purely 
psychological root: there is no other explanation why, e.g., the recent numerical study of 
their 'failure' [6] did not take into consideration any available a priori condition of their 
applicability as provided in virtually any of the recent reviews. 

The history of contradictions started with the 15-year-old paper by Singh et al [7]. Its 
authors noticed that the quartic-plus-sextic anhannonicities and Hamiltonians 

f > - a  g 6 > 0  (2) h f 2 4 6 H ( ~ ~ ~ ~ ~ )  = --A + - + g z r  + g d r  + g6r 
2 p  r2 

might be called 'next-to-solvable'. Indeed, in the context of the standard power-series 
method [SI, these authors re-discovered (see [ 9 ] )  the possibility of survival of a few 
elementruy bound states (and explicit exact formulae for energies) in certain strongly 
perturbed anharmonic-oscillator cases. Moreover, they revealed and emphasized a close 
analogy between these harmonic-oscillator-like terminating solutions and all the remaining, 
non-terminating and nowelementary bound states of the given Hamiltonian. 

In its time, [7] inspired a boom of papers on H(sex'c). It was immediately noticed [lo] 
that the elementary and exact partial solvability of H(sntic) at certain couplings may be 
extended to many other integer-power oscillators 

(3) 

with g49+2 = a2 0, to their further non-integer-power descendents with arbitrary rational 
exponents 8 in (1) [ 111 and to some even more general systems (see other references as 
listed, say, in 1121). 

The main 'next-to-solvability' hypothesis of Singh et al [7] was based on a Hill- 
determinant tridiagonal-matrix representation of all the Hamiltonians H("xdc). Unexpect- 
edly, it proved to be wrong-the reader may consult [4] and [13] for several alternative 
explanations of this puzzling phenomenon. A few years later, sextic oscillators were shown 
to require at least a quadridiagonal-matrix representation of H(*xdC) whenever g4 4 0 in 
equation (2) [14]. 

Of course, any coupling-dependent split of Hamiltonians (3) into 'more' and 'less 
solvable' cases is highly counter-intuitive and unpleasant. Nevertheless, as far as the present 
author knows, there is still no complete solution of this problem. Here, therefore, we are 
going to settle the question-for all the forces (1). we shall describe and prove the following 
consequent algebraization of the underlying Schrijdinger bound-state problem: 

f 4 49+2 h 
2/1 r2 

H'9) = - -A+ - +go + gzr2 + gqr + ... + &+2r 

(i) All the bound states will be determined by an infinite-dimensional matrix equation 

Q I N l ( ~ ) = o  N + w  (4) 

for the Taylor-series coefficients w of the wavefunctions (see below for more detailed general 
definitions and rigorous proofs). 
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(ii) All the binding energies subsequently become fixed by the algebraic ‘Hill- 
determinant’ prescription 

det Q[” = 0 N --f 00. (5) 

(iii) The number (say L )  of non-zero diagonals in the pertaining non-variational matrix 
representatives Q‘”] = Q[“](E) of Schrainger operators EZ (with a unit operator 
Z) will be kept minimal. 

The resulting constructive classification of all the oscillators (1) with arbitrary couplings 
and arbitrary rational exponents will bring the preceding developments in the field to a 
climax: 

(i) At L = 2, we encounter the well known pair of the exactly solvable (i.e. two-term 
recurrent, harmonic and Coulombic) oscillators. 

(ii) In full accord with previous results, four and only four ‘next-to-solvable’ L = 3 
descendents exist. With the usual f > -$ and properly scaled-out gs-’s, their explicit 
Hamiltonians read 

A + fr-’  + ar2 + n r 4  + r6 
A 
2P 

_ -  

A + f r-2 + ar-‘ + S2r + r 2  
A 
2P 

2L( 

21.L 

- _  

- _  A + f r-2 + arF4I3 + br-’I3 + r2p 

A -- A i f r-’ i arF3I2 i br-‘ + r-’I2. 

Their list presents their asymptotic terms r*- in descending order and the necessary 
‘superconfinement’ condition of the tridiagonality of their Q’s has the form S2 > 0 (and 
E e 0 in the latter two cases, see [14,15]). 

(iii) As the next L = 4 set of oscillators with four-diagonal Q’s, there emerge 19 
separate ‘next-to-next-to-solvable’ Hamiltonians 

A f H @ )  = --A + - + v ( r )  
2p  r2 

with a centrifugal-like shongly singular core if needed, f > -$, and with the further, at 
most weakly, singular interactions V ( r )  which are listed here in table 1. 

(iv) Pentadiagonal Q’s with L = 5 appear in connection with the further 35 ‘next-to- 
next-to-next-to-solvable’ oscillators (see table 2), etc. 

We might continue our L-classification indefinitely. A few phenomenologically most 
appealing elements of the further group of oscillators with hexadiagonal Q’s are sampled 
here in table 3. In general, for even L we get NL = i (1  1L2-26Li4) different potentials for 
the L-diagonal matrices Q with the so-called Hessenberg-matrix structure [16]. Similarly, 
the odd-L sets would comprise as many as NL = $(11L2 - 28L + 5 )  separate potentials. 

In all the tables, many Hamiltonians may he inter-related by a Liouvillean change 
of variables r --f rCoN‘ in the underlying Schrodinger differential equations [17]. As a 
consequence of this ‘generalized Schwinger duality’ [l], we may restrict our attention to 
mere ‘canonical‘ representatives H ( q )  (3) of all our Hamiltonians (1) with rational exponents 
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Table 1. The complete list of oscillatorx with qlwdridiagonal Hill determinants (0 > 0) 

Potential V ( r )  Admissible energies 

ar' + br' + cr6+ Qr8 +do 
or2 + br'+ sLr6 + r l n  

all 
all 
all 
all 
all 
all 
all 
all 
all 
all 
all 

E C O  
E a 0  
E C O  
E = O  
E c O  
E c O  
E c O  
~ < n  

6. An alternative and more concise presentation of our classification pattern may then be 
found in table 4. 

In practice, our separate minimal mabizations Q(E) may be applied not only as certain 
re-summed perturbation theories (see [7] or 1181) but also, directly, in potential models of the 
various simple quantized systems in the atomic, nuclear or chemical physics. The multiterm 
sextic anharmonicities or the Coulomb plus harmonic ('harmonium') superpositions in 
equation (6) and table 1 are worth noticing . One of the most popular ones-the quartic 
anharmonic oscillator [19]-stands as the sixth, A4 = 1 row in table 1. Its double- 
well alternative lies on the ninth line of table 2. The well known Coulomb plus linear 
'quarkonium' potential I201 enters both tables 1 and 2 at different energies. Finally, several 
versions of the octic or popular cubic anharmonicities may only be found among the less 
simple forces in table 3. 

In the text our starting point will be the power-series method (section 2.1) and the 
related question of the length of recurrences t (section 2.2). In section 3, we shall remind 
the reader of the hypergeometric-like structure of wavefunctions at large n >> 1 (section 3.1) 
and r >> 1 (section 3.2), and discuss the problem of boundary conditions (section 3.3) for 
all the forces in question. 

Section 4 will summarize these prepsatory steps and clarify the one-to-one 
correspondence between operators H and Hessenberg matrices Q. The maximal admissible 
simplicity of the secular Hill determinants det Ql"I(E) is achieved there resulting in the 
related ordering or classification and hierarchization of potentials (see tables 1-4). Finally, 
section 5 recalls [l8] and adds a few more details to the applicability of the whole scheme 
in a perturbative setting. We show that (and how) the standard anharmonic oscillator admits 
an entirely new Hill-determinant-inspired perturbative study. 

2. Wavefunctions 

Up to the abovementioned (and entirely straightforward) Liouvillean changes of variables 
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Table 2. The complete list of oscillators with pntadiagonal Hill determinants (R > 0).  

4949 

potential v(r) Admissible energies 

or2 + . . . + drs + cr'O + RI" + I" 

r = r ( x )  = x" 

@ ( r )  + x ( x )  = rmnS'$(r) 

which preserve the power-law character of potentials 

rz j  -+ xs  s = Z( j  + ~ ) p  - 2 

all 
all 
all 
all 
all 
all 
all 
all 
all 
all 
all 
all 
all 
all 
all 
all 
all 
all 
all 
all 
E < O  
E > O  
all 
E < O  
E = O  
E = O  
E = O  
E < O  
E = O  
E = O  
E < O  
E < O  
E s O  
E < O  

(7) 

we may restrict our attention to the 'canonical' Hamiltonians (3). Demanding that the 
energy term remains non-trivial (i.e. that we obtain the zero exponent S = 0 at some integer 
j ,  < q + 1) we may enumerate all the admissible Liouvillean exponents p at each 4, 

Then, om explicit tables 1-3 of different potentials are easily reconstructed from our final, 
schematic table 4. 
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Table 3. The sample of oscillaon with hexadiagonal Hill determinants (n > 0). 

Potential V ( r )  Admissible energies 

a 9  + . . . t erLo + f r"  + grI4 + nrI6 + rls 

arz t br' t cr6 t dr8 t nrlo t rI8 
m2 t br' t cr6 - Ors + rl' 

orz + br' + cr6 + d4 
or2 t br4 + cr6 - Slr8 + r10 

ar-l t ...+ er4+  f r s  t gr6 + Rr7 t r s  
ar-I t . . . + dr' +er' + fr' t S2r6 + r8  

all 

... 
all 
all 
all 
au 
all 
all 

all 
all 
all 

all 

all 
all 

all 
all 
all 
all 
all 
all 
all 
all 
E c O  

E < O  
E 4 0  
all 
all 
E C O  
E = O  
E = O  
E > O  
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Table 4. The complete list of polynomial oscillators with L diagonal e's. 
4951 

hameters C0"Sbaints 

L ¶ t  sipga, signg+z signg+4 signg.+6 signga,-s signg4-IO 
(al L S 6 

3 1 1  1 
4 1 0  -1 or0 

5 2 1  0 -1 or0 
5 3 3  1 
5 3 3  0 1 
5 3 3  0 0 1 
6 2 0  -1 
6 3 2  0 0 -1010 
6 4 4  1 
6 4 4  0 1 
6 4 4  0 0 1 
6 4 4  0 0 0 1 

( b ) L  ='land L = 8 
7 3 1  0 -1 
I 4 3  0 0 0 -1 or0  
I 5 5  1 
7 5 5  0 1 
I 5 5  0 0 1 
I 5 5  0 0 0 1 
7 5 5  0 0 0 0 1 
8 3 0  -1 
8 4 2  0 0 -1 
8 5 4  0 0 0 0 - I  or0 
8 6 6  1 
8 6 6  0 1 
8 6 6  0 0 1 
8 ,  6 6 0 0 0 1 
8 6 6  0 0 0 0 1 
8 6 6  0 0 0 0 0 1 

2.1. The power-series method 

In our canonical, radial (e = 0, 1, . . .) differential Schrodinger equation 
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This is a useful technicality-via an obvious recurrent definition of the new coupling 
constants, dq = g q / ( h ) ,  . . . (or, vice versa, gQ = 2 ,  dq, d,+l, . . .). we immediately arrive 
at the compact asymptotic estimates of the wavefunctions, 

with 

1 4  dq+1rQ+'. G ( r )  =Gw,&)=-dlrZ+-d2r +- 1 

2 4 2q+2 

In terms of a re-parmewization 1(r + 1) = !(e + 1) + f of the angular momentum, 1 > -f, 
we may distinguish between the physical (regular) and unphysical (iegular) solutions in 
the origin, 

p P u " ( r )  r l + l  r << 1 

p w W c a J ) ( r )  << 1. 

In accord with Hautot [4], we may now build the wavefunctions from a most flexible and 
regular power-series ansatz 

where the q + 1 free parameters p in the exponent 

generalize their above-mentioned WKB predecessors and may be arbiwary. In a purely 
numerical context, their values may apriori be very easily optimalized by means of Hautot's 
very elegant quasi-variational recipe [4]. 

The insertion of ansatz (11) converts the radial differential Schrodinger equation (8) t 
(9) in 24 + 3-term recurrences [8], 

E,w,+~ = C;"O~ + C ' : ) r ~ ~ - l  + ~ + C,?O~-~+ 

+ D (1) OJ.,-I + ... + D ( ' ) ~ ~ - 2 q  + D(qt')o.-p-1 n = 0, 1, .  , . (13) 

where 

Bn = (2n +2) (2n + U + 3 )  

~ , C i ) = 4 n ~ j + I + 0 ( 1 )  j = 0 , 1 ,  . . . ,4  

D('+'' = 

0") = (4+1 + Bq+t)(dp - Bq) + (dq + Bq)(dq+~ - 

D(')=(dqti+Bq+i)(di - B ~ ) + . . . t ( d t  tBi)(dq+t  - B q + l ) .  

+ Bq+~)(dp+~ - 8q+1) 
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These recurrences are readily solvable: 

0 0  
@"+I = - det Q'"' 

n;=1 Bk 
n = 0,1,. . . . 

Here, matrices 

are finite-dimensional. As long as Q,,,n = 0 for all n m + 1, these matrices possess the 
so-called Hessenberg structure [16]. 

We may summarize: in terms of the free parameters p and undetermined physical energy 
E ,  all OUT bound-state wavefunctions are explicitly defined by the closed formulae (1 1) and 
(14). At q = 0, equation (14) degenerates to an elementary product. Of course, no similar 
degeneracy occurs at non-zero 4's. 

2.2. Lowering the number L of non-zero diagonals 

Let us choose a non-negative integer t 4 q and demand that &+I = dq+l ,  p, = 
dq, . . . , pq+l-t = d,-,+l in equation (11). As a consequence, the first f + 1 rightmost 
coefficients D drop out of our recurrences (13). In other words, each subsequent wm-like 
choice of the (f + 1)th asymptotically dominant coefficient p will lower the length of OUT 

recurrences to L = 2q + 2 - t and the order of our difference Schriidinger equation (13) to 

In accord with the above-mentioned particular studies of the example q = 1, unexpected 
difficulties may arise at any such choice with f 2 0. Hence, besides the fully WKB case 
with t = q and Singh-like exponentials (lo), we may need the partially WKB or transitional 
exponents 

L - 1 = 2q + 1 - f. 

1 
dq-,+lrQ-Z'+Z + . , . + -dq+jr*+2 

1 
+ 2q - 2t + 2 2q + 2 

with all the non-negative integers f < q. 
The maximally WKB choice of G(')(r) with t = q > 1 and with the most compact 

mahization ( L  = q + 2) was first proposed and tested in a letter 1211. In [lS]. the 
related construction of equation (4) with L-diagonal quasi-Hamiltonians Q ( E )  was then 
complemented by its rigorous proof and by the necessary and sufficient 'superconfinement' 
condition of its validity. Briefly, whenever we define a maximal non-negative integer M 6 q 
such that 

dq-M+l = dq-M+2 E.. . = dq-i = dq = 0 (16) 

(cf equation (9)-we put M = 0 for dq # 0), the latter superconfinement condition reads, 
simply, as 

d4-M > 0 M < q .  (17) 
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We may immediately trace it in equation (6) and in all the minimal-length L = q + 2 
sub-items of our tables where equation (17) appears disguised as a requirement Q > 0 or, 
sometimes, E < 0. 

Arbitrary external and independent (say, numerical or variational) specification of the 
sufficiently precise E@hYsicd) enables one always to choose t = q (i.e. minimize L = q + 2) 
and use equation (1 1) as an approximate wavefunction, without any recourse to its secular 
equation companion (5). Nevertheless, we need the Hill-determinant matrization conditions 
(17) and (5) whenever we intend to replace recurrences (13) by their specific truncation 
(4). Indeed, unless we have it, we are not permitted to construct Green's functions in terms 
of (generalized) continued fractions 17.151, and we also lose the possibility of applying 
any form of the related perturbation theories 118,221. For these reasons, the explicit Hill- 
determinant-like matrization (4) as well as its L-minimalization and rigorous proof remain 
highly desirable. 

In the literature, the consequent and systematic minimalization of L's has not yet been 
studied at all. Hautot's universal prescription (12) even keeps the length of recurrences at its 
maximum (!) L = 2q + 3. Even our preceding study of Hill determinants [22] only offered 
an insignificant improvement. With mere leading-order-wrce exponentials (C(') with i = 0 
in the present language), its choice of dp+l =&+I only lowered Hautot's L by one unit in 
general, to L = 2q + 2. 

Now, we are going to cover all the WKB f 6 q matrizations and to propose and prove the 
universal, unrestricted construction of quasi-Hamiltonians Q(E) which contain the lowest 
possible number of non-zero diagonals L = 2q + 2 - t .  

3. The difference Schrodinger equation 

A missing link between the standard numerical boundary conditions 

(where the nodal zero R moves to inlinity in principle) and their present Hill-determinant 
equivalent (5) or, in the light of equation (14), numerical analogue 

"+I = o  N>>1 (19) 

lies obviously in an analysis of the asymptotic behaviour of Taylor coefficients a, 
themselves. Unfortunately, it can hardly be inferred from the explicit Hill determinants 
(14) since it becomes more and more difficult to evaluate them with increasing n's. A 
return to recurrences is called for. As a byproduct, it will recover another parallelism 
between the q = 0 ('solvable') and q > 0 ('unsolvable') interactions. 

3.1. Asymptotics in n >> 1 

In accord with [22] and for all the non-negative q ' s ,  the new change of variables 
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i.e. o,+l + pn ,  with 

2 i + 3 - 2 q + -  
(Y 

and with the (in general, complex) parameter 

is ambiguous and has to be further specified by the choice of index k = 0,1, .  . . , q .  For 
each of these choices, our difference Schrdinger equation (13) acquires the same new and 
much more transparent form 

P N  - PN-9-1 = (F,PN-, + F % + I P N - ~ ~ - I )  + (Fq-lP~-q+l + F ~ P N - ~ )  + ” ’  

+ (FIPN-I Fq+ZPN-q-Z) (22)  

where all the coefficients are N -  and k-dependent, Fi = Fj(N, k). 
By definition, equation (13) and equations (22) with all the possible different k’s are 

mutually equivalent. In the asymptotic region, the coefficients F may be simplified, namely 

and 

Due to the asymptotic smallness of these F’s, all the difference Schrodinger equations (22) 
with different k’s and q’s become identical at large N ,  

P N  - PN-9-1 = 0 N >> 1. (23) 

The q + 1 leading-order asymptotic components of our Taylor coefficients may now he 
written as numbered by the index k = 0, 1 ,  . . , , q as well, 

In the fully WKB regime with t = q, this set of solutions is complete and the general n >> 1 
solution equals to their superposition, 

q 

% x C k 6 : ’ .  (25) 
k=O 

This asymptotic formula complements the small-n determinantal prescription (14). 
Whenever we choose a t < q at a non-zero q ,  a few additional independent components 

of o must exist in principle. Nevertheless, in accord with [ZZ], all these k > q 
components remain asymptotically negligible and may be ignored. Thus, the above explicit 
equations (24) and (25) and the common ‘hypergeometric-function-like’ asymptotic structure 
of coefficients OM link the q = 0 and q > 0 cases and remain I-independent. 



4956 M Znojil 

3.2. The compatibility with asymptotics in r >> 1 

At almost all (i.e. unphysical) energies E,  the exponential asymptotics of the regular 
solutions remain unphysical, 

Vice versa, the normalizable bound states in equation (10) may be interpreted as mere 
limits of solutions (26) constrained by the standard asymptotic boundary condition (18). 
This only defines the energies EbhPicd) as roots E(approx'm)(R) of equation (18) in a 
double (i.e. Taylor-series and R -+ 03) and purely numerical limit, A further analysis is 
needed. 

3.2.1. The q = 0 guide. In the trivial harmonic-oscillator example with q = 0 and 
E # E(cxaa), the Taylor series (11) does not terminate. For an estimate of its r $5 R > 1 
asymptotics, we may ignore the exponentially small corrections in equation (1 l) ,  

m 
@("@"'(R) x . . . N >> 1 

n = N t l  

approximate the summation by an integration, 

and, due to the non-negativity of the integrand, mall the so-called saddlepoint method 
(see, e.g., 141 or [22] for more details). 

Of course, the resulting formula 

$(rrSu'ar)(R) F ; : O N + I  exp(+;R*) R >> 1 (27) 

is dominated by a single exponential and, hence, cannot coexist with boundary conditions 
(18) at any E .  As a consequence. in accord with the textbooks, the whole series must 
terminate. It is worth noticing that even the truncated q = 0 secular equation ( 5 )  or, 
equivalently, (19) is in fact exact and defines precisely the k t  N + 2 lowest harmonic- 
oscillator (or Coulombic) bound-state energies. This feature may (and, up to a few 
exceptional couplings and energies [lo], will) be lost for q > 0. 

3.2.2. The assumption of one-term dominance for q > 0. Our leading-order knowledge (24) 
and (25) of Taylor coefficients on at Iarge n suffices for a straight generalization of the 
q = 0 saddle-point estimates. Indeed, we may always split the regular wavefunctions into 
separate components generated by the different A's as numbered by k's in equation (21), 
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Each of the latter sub-sums may be replaced by an integral. Their subsequent saddle-point 
estimates lead to the set of q + 1 formulae 

which are all similar to their single q = 0 predecessor. 
At q z 0, we encounter a qualitatively new situation. First, the single equation (19) 

cannot be interpreted as a termination requirement for all the q + 1 independent sub-sums- 
we would need q + 1 independent algebraic conditions as well [IO]. Second, even at q = 1, 
an interplay of the q + 1 separate exponentials (29) is complicated. An analysis of their 
mutual asymptotic cancellation at physical energies is a difficult task unless one of them 
clearly asymptotically dominates. This is our basic idea, to be further developed in what 
follows. 

4. Hamiltonians in the Hessenberg-matrix representation 

Guided by the q = 1 example, we shall try to satisfy boundary conditions (18) in a maximal 
analogy to harmonic oscillators: In the asymptotic domain of coordinates r >> 1, we shall 
simply postulate that just one exponential (29) (i.e. the koth) dominates the superposition 
(28). 

Once we replace this superposition by its single exponential component, our explicit 
knowledge of it immediately reduces our exponential-dominance postulate to mere 

N >> 1, 
or 
requirement of dominance of a single Taylor coefficient, i.e. O N + I  x oN+l, I01 

(30) Ik I l w ~ ~ l l  >> IoN+ll k f 0  N >> 1. 

With, for the sake of definiteness, ko = 0. this is suitable for further analysis. At t = 0, the 
idea has been followed in [22]. Now, we are going to extend it to all other eligible positive 
integers t 6 q. 

4.1. The consequences of one-term dominance 

For the time being, let us assume that condition (30) holds. As its consequence, we have 

@(regu'ar)(r) x @lol(r) s 101 exp(. , .) 

and see thar in a partial analogy to harmonic oscillators, the only way of meeting the 
boundary-condition requirement (18) leads through the existence of a zero in the coefficient 

IO1 % O N + I  itself, 

sign[~('e~u'"~(~)(icorrections)] XY sign[oN+l(icorrections)]. 

Thus, in the appropriate limits, the nodal coincidence 

iff,pwW(R) = 0 WN+l = 0 

represents precisely the necessary background and proof of the validity of secular equations 
(19) or (5). Hence, the correctness of the non-variational and non-Hermitean Hessenberg- 
manix matrizations (4) of OUT Schradinger bound-state problem for all the q's would simply 
follow from the validity of our single-term dominance postulate (30). 
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4.2. The guarantee of one-term dominonce 

The desired asymptotic suppression of all the k # 0 coefficients mik' is to be achieved now 
by an appropriate choice for Hautot's free parameters ,9. 

In the underlying sufficient condition (30), the explicit fist-order asymptotical estimate 
(24) of w.'s gives no hint. In the leading-order approximation and at all the k's, the 
magnitude of all the complex d k " s  remains the same. 

The second-order asymptotic solution of our difference Schriidinger equation (22) is 
not difficult. Its construction is simplified by the harmonic-oscillator-like two-term form of 
recurrences 

Bnw,+l - C,, (4) wn-q =small. 

Indeed, we may use the old leading-order solutions (20) to define the new, non-zero and 
explicit right-hand-side expression. The idea may be applied iteratively and the exact 
difference Schrildinger equation (22) may be solved with higher and higher precision if 
needed. 

In the first step with an input pAkl % a constant we get the output 

PN = exp (&)'"*'I N >> 1 

which may already remove the degeneracy. Indeed, with the k-dependence hidden in the 
(complex) parameter A (cf equation (21)) and, hence, in the factor Ai:, we get 

where 

Now, as long as the norm of f ( N ,  k )  still remains asymptotically equal to one, we may 
satisfy the asymptotic inequality (30) whenever our choice of Bp makes the argument in the 
exponential (31) positive, i.e. whenever 

This is our simplest sufficient condition. It demonstrates that there exists a non-empty class 
of parameters (here: pq restricted by equation (32)) which guarantees the validity of the 
Hill-determinant secular equation (5). 

4.3. The guarantee of one-term dominonce at a minimal integer L 
Among all the mahization-permitting parametrizations B and ansa- @('q"'")(r) it is still 
possible and quite natural to search for those which lead to the minimal length L = 2q+2-t 
of recurrences (13). In other words, once we assign several exponents G(')(r) to a given 
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potential V(q)(r) ,  the maximal permissible WKB precision t will minimalite the L's as 
required. 

Our above result (32) only indicates the tactics. Indeed, after further insertions, it may 
be deciphered 'as a condition 

(33) 

which is only compatible with the t > 0 WKB requirement & = d9 at the positive d9's (i.e. 
g% > 0, i.e. equation (17) with M = 0). !&e versa, we may say that equation (32) leads 
to our final, minimal possible L if and only if the inequality g% c 0 characterizes the least 
favourable case with only a minimally wKB admissible ansatz and t = 0. The length of 
recurrences L = 2q + 2  is then still quite large, anyway (see tables 1 4  for a few samples). 
In all the other cases, our preceding proof must be extended, basically, to all the integers 
M # 0 in equation (16). 

B9 + d9 > 0 

In a routine manner we then get 

and, for further discussion, we have to distinguish between the subdominantly attzactive and 
subdominantly repulsive forces with the positive and negative couplings g4q-ZM > 0 and 
g+-ZM < 0, respectively. 

4.3.1. The subdominantly attractive cases with M < q. In full analogy to our preceding 
M = 0 discussion, we may derive the multiplet of independent dominant solutions for any 
M, 

Obviously, its k = 0 component remains dominant if and only if we require that &-M > 0 
for M < q. vice versa, once the 'decisive' coupling g+ZM at some M c q happens to be 
positive, we are free to put all the p's equal to their WKB values d. Thus. the optimal choice 
of the maximal t = q is admissible, and the recurrences remain the shortest possible ones, 
with length L = q + 2. As its particular q = t items, table 4 enumerates the corresponding 
subdominantly attractive potentials V(9)(r) up to q = 6. 

4.3.2. The subdominantly repulsive cases with M c q .  In all the subdominantly repulsive 
cases-with the exclusion of M > q-we may still achieve a partial shortening of 
recurrences via the trivial WKB choice of 

&y+, = &M+2 = . . . = sq = 0. 

Next, we have to recall formula (34) once more. The sufficient condition of applicability of 
our formalism (namely, the dominance of the k = 0 term in equation (30)) will obviously 
follow from the presence and arrangement of the powers of the complex and unimodular 
quantities A(&) in the exponent again. Mutatis mutandis, we derive the corresponding 
sufficient condition for general M 
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Our discussion comes to its end-the latter prescription has a form of restriction 

&-M > - d q - M  2 0 M < (36) 
imposed upon OUT choice of &-M in the ansatz (15). In the non-atwactive regime with 

0 < B ~ - M  # dp-M c 0 

it implies the incompletely WKB character of OUT ansatz. The necessity as well as optimality 
of the choice o f t  = M c q is obvious, and the validity of the Hill-determinant secular 
equation (5) is guaranteed by equation (36). By construction, the WKB violation remains 
minimal. Thus, all the subdominantly repulsive potentials V(9)(r) (3) with M q may be 
assigned recurrences of the minimal matrization-compatible length L = 2q +2 - M. Up to 
L = 8, the complete list of these potentials is provided by all the negative-coupling items 
in table 4. 

4.3.3. All the remnining cases (with M = q). At M q or rather M = q, we again arrive 
at equation (36). Formally, we put do = 0 and choose PI > 0. In this way, we obtain the 
repulsive-like value of the number L = q + 3 irrespectively of the sign of the next non-zero 
couplings if any (cf all the ‘M = q = t + 1’ items in table 4). 

5. A few remarks on applications 

5.1. Perturbation theory 
5.1.1. A variation of couplings. Our optimal Hessenberg non-diagonal Q’s carry much 
more compressed information about the system in question (with, e.g., 46 diagonals at 
q = 2) than the standard-mahix Hamiltonians (say, in a harmonic-oscillator basis, with 
11 non-zero diagonals at q = 2). In the applications and computations, one of the most 
important immediate merits of this compression lies in the existence of explicit determinantal 
formulae (14) and asymptotics (e.g. (31)) for an immediate semi-numerical evaluation of 
wavefunctions. 

Another immediate application of the compressed Q’s may be found in perturbative 
constructions (cf 1181 for more details). Indeed, whenever we have to analyse a variable 
coupling in equation (l), 

(37) ga = gs(o) +Ags(i) +Azgsu) + .  .. 111 < 1 
the Rayleigh-Schrodinger ansatze 

and 

Q ( E )  = Qco)(E(o)) + AQci)(E(o), E d  + h2Q(z)(E(o), 41). Em) + ... (39) 
will enable us to reconstruct the energies by perturbative techniques, i.e. via a systematic 
step-by-step construction of corrections to energies and wavefunctions in the spirit of the 
textbook. The use of minimal L’s will just simplify the formulae. 

An important technical ingredient in similar recipes lies in an optimal choice of the 
zero-order approximant Q(o)(E(o)). Its adequacy is vital for the feasibility of perturbative 
computations as well as for their convergence. Besides this, the construction of a simplified, 
finite-dimensional Q(o)(E(o)) may also be interpreted as the final missing part of our 
preceding considerations. 
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5.1.2. An example: Quartic oscillators. Our 'hierarchization' of potentials (tables 1-4) 
exhibits a few seemingly counter-intuitive features: 

(i) it misses a variational background; 
(ii) it depends on the signs of some couplings and energies; and 
(iii) it presents the popular [I91 phenomenological quartic anharmonic oscillator (i.e. in 

general, the q = 2 and L 2 4 Hamiltonian 

H ( ~ U d c ) = - - A + - + - + a r + b r 2 + c r 3 + d r 4  h f e  
2fi rz r (40) 

with an admissible centrifugal-like term f > -4, Coulombic coupling e, polynomial 
corrections a .  b ,  c and the asymptotically dominant, confining d > 0) as a system more 
complicated than its sextic partner H(Sexds) (equation (2)). 

The quartic equation (40) requires a non-trivial Liouvillean change of variables (7) 
with p = I. and the underlying q = q(qUdc) = 2 Hamiltonians become transformed into 
manifestly asymmetric Hessenberg matrices with L > 4. This proves both challenging and 
useful for illustration purposes. 

I 

Our classification distinguishes between the following five domains of couplings: 
(Dl) c > 0 (i.e. M = 0 and L = 4, see table 1, row 5 or table 4, row 4); 
(D2) c = 0 and b > 0 (i.e. M = 1 and L = 4, see table 1, row 6 or table 4, row 5); 
(D3) c = 0 and b = 0 (i.e. a = arbitrary, M = 2 and L = 5, see table 2, row 10 or 

@4) c = 0 and b c 0 (i.e. M = 1 and L = 5, see table 2, row 9 or table 4, row 6), and 
(DS) c c 0 (i.e. M = 0 and L = 6, see table 3, row 14 or table 4, row 10). 

As long as the physical and unphysical asymptotic behaviour (10) of the quartic 
wavefunctions is well known, 

G(r )  = GwKB(~) = ?pwmr3 + &%KB~'+ n v w  

LVWW = > 0 Bwm = C / ~ ( Y W K B  y w ~  = (b - &&)/~LVWKB (41) 
we may immediately recall our general results and postulate 

table 4, row 6); 

m 

(42) +(r )  = exp(-pWmr3 I - $ p r 2  - y r )  ~ w n r n + ' + ' .  
n=O 

Here the non-negative angular momentum e is modified into a quantity 1 > -1 defined by 
the quadratic equation 1(1+ 1) = t ( l +  1) + f. The remaining parameters ,3 and y are free 
(cf equation (11)). 

Being guided by section 4.3.1, we may now choose the optimal ,3 = &KS (> 0) and 
y = in the domains (D1) and (D2). The related matrix Schrodmger equation 

Q ( L , W d C )  (f) = 0 (43) 
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where n = 0, 1, . . . . In the subsequent two domains @3) and (D4) the respective analyses 
of sections 4.3.3. and 4.3.2 with ,3 = &, = 0 impose a wm-breaking y > -" > 0. 
The pentadiagonality of equation (43) results in 

In accord with section 4.3.2, the last domain @S) necessitates ,3 > -pw,(> 0) and six 
diagonals: 

Here, the value of y remains arbitrary and may be fixed, e.g., on the purely numerical 
grounds. 

Besides the above-mentioned perturbative constructions, our infinitedimensional 
Hessenberg Schrodinger (43) may also immediately be solved numerically. The details of 
realization of an appropriate algorithm may be found elsewhere: reference [21] simplifies 
a = c = e = 0 and pays attention to the various possibilities of an acceleration of 
convergence. 

5.2. The finite-dimensional Hessenberg Hamiltonianr 

5.2.1. The N + l  -dimensional zero-order ~ ( 0 ) ' s  and Magyari equations. The tacit non- 
degeneracy assumption w, # 0, n >> 1 in the preceding sections is known to fail at a few 
exceptional energies and couplings [IO]. With the above zero-order perturbative motivation, 
we may (and shall) restrict our attention just to these exceptional finite-dimensional vectors 
%) 9 

"(0) # o  o N t l ( O ) =  . . .= wN+((O)=o (47) 

and related matrices Q(O)(E<O]). 
Obviously, the termination requirements (47) cannot be satisfied unless we employ the 

WKB form of exponents G ( r )  (41). vice versa, under the assumption (47) the fully WKB 
choice of these exponents guarantees a trivial normalizability of the wavefunctions in any 
domain (Dl-D5). 
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Moreover, once we replace the coefficients h in equation (47) by Hill determinants 
(14), we obtain a coupled set of nonlinear (polynomial, determinantal, ‘Magyar?) algebraic 
equations. These equations define (at most a few) exceptional ‘Magyar? couplings and 
energies. As a consequence, our above WKB-compatible domains (Dl) and 0 2 )  may be 
complemented by the resulting set of roots (DM) in principle. 

Our specific q = 2 definition of potentials (40) and ansatz (42) convert the corresponding 
radial differential ‘homework‘ Coulomb + quartic equation into the purely algebraic quasi- 
linear equation 

‘CO Do 0 ... 0 
E1 C1 DI 0 ... 0 
Az Ez Cz 0 2  0 ... 
0 A3 B3 C, 4 ... 
0 ... 0 AN BN C N  
... 

0 ... 0 AN+] E N + I  
$ 0  ... 0 0 AN+Z 

[ 
WN-I 

where the last row removes just one degree of freedom, 

a = a ( N )  = - 2 a ( N  + 1 + 2 )  + 2 p y  A, = 2a(n - 2 -  N )  (49) 

and the non-square matrix remainder with 

B , = X . + x  X , = 2 p ( n + L + $ )  x = - y Z - E  

C, = Y. + e  Y, = 2y(n + L +  1) (50) 

Dn = -(n + I ) ( n + 2 L  + 2) n = 0.1,. . . , N + 1 

forms an overcomplete system of N + 2 equations for N + 1 Taylor coefficients W. and has 
to fix another pair of free parameters in principle. 

One of the most natural numerical forms of the necessary conditions of existence of 
the non-trivial solutions of equation (48) is the-mutually coupled-pair of eigenvalue 
conditions 

e + Y o  DO 0 ... 
E I ( x )  e +  Y,  DI 0 ... 

(51) det ( ... 
0 ... 0 AN BN(x)  e +  YN 

and 

x + X I  Cl(e) DI 0 ... 
AZ x + X z  Cz(e) DZ 0 

’0’ ) = O  (52) 

for e = e(x)  and x = x(e ) .  Their numerical solution is sampled here in table 5-it only 
remains trivial at N = 0 [lo]. 

det( ... 
0 ... 0 A N  X f X N  CN(e) 
0 0 ... 0 AN+I x + X N + I  
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Table 5. A sample of roots of Magyari equations: (a) s-wave ( I  = 0). b = 1.  e = 0.1, d = 0.01; 
(b)  b = 1 ,  c =  0. d = 1.  

N O  2 4 6 8 IO 

(0) a 3.35 2.95 2.55 2.15 1.75 1.35 
e -7.50 -7.22 -6.95 -6.66 -6.38 -6.09 
E -12.56 -11.64 -10.76 -9.91 -9.09 -8.31 

s-wave ( I  = 0) p-wave ( I  = 1) 

N 3  6 3 6 

(b)  a -10.00 -16.00 -12.00 -18.00 
c - 1.60 -2.09 -2.75 -3.39 
E -0.298 -0.350 -0.267 -0.289 

5.2.2. An ambiguity of non-numerical constructions: N = 1. The s-wave (1 = 0) Magyari 
equations (48) with N = 1 seem fairly clear. They imply that 

and 

de t (2y+e  x + 3 8  4 y + e  -’ ) = O ,  (54) 

An elimination of the variable e = e(x) from the first equation (53) and its insertion in the 
latter equation (54) gives 

x 4  + 16@x3 + 2x2(2ciy + 478’) + 8x(4cisy + 01’ + 30p3) + 6Oci,¶’y + 240’8 + ZZp4 = 0. 

(55) 

Unexpectedly, the degree of this equation may easily be lowered. Once we replace, say, 
equation (53) by its alternative 

the same elimination leads to a mere cubic secular equation 

x 3  + 138~’ -k x(4c iy  + 5.58’) + 2Oolpy + 8ci2 + 75p3 = 0. (57) 
It coincides with equation (55) divided by the factor (n + 38). 

5.2.3. The feasibility of non-numerical constructions: N = 2 and N = 3. Let us return to 
an arbitrary partial wave 8 = U + 1 P 0, re-scale g4 = 1 (i.e. ci = I), shift the energies in 
such a way that x = -8’ - E = 0 and suppress one degree of freedom by the postulate 
y = 2c(b - 8’) = 0. Then, Magyari equations (48) become significantly simplified: 

e -(e + 1) 0 0 ... 0 
B(8 t 2) e -2(8 +2) 0 ... 0 

-2N +9(8+4) e -3(8 + 3) ... 0 
... 
0 .., -6 6 ( 8 + 2 N - 2 )  e -N(8  + N )  
0 ... 0 -4 8@ + 2 N )  e 
0 ... 0 0 -2 8 ( 8 + 2 N + 2 )  

(58) 
i 
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and remain solvable non-numerically. Their explicit N = 2 formulation 

det -4 p(0 + 4 )  : ) = o  (59) (I -(e+1) -2 p(e+6)  

" 
and 

det p ( O + 2 )  e -2(e + 2 )  = o (60) 
-(e + 1) ( 1  -2 p (e+6)  

and a change of variable z = Be leads to the coupled pair of nonlinear equations 
2% + 4x8 + 6) - 4 ~ ( e  + i)(e + 6) + 2e3 = o 
&e+ i ) (e+2)(e+6)+e3z(e+6)-4e3(B +2) =o. 

(61) 

Subsequently, the replacement e = (tz2)'P makes these equations linear in z or in r (though 
not in both of these variables at the same time-it contains their products). 

The elimination of .: is slightly simpler. It leads to the single quadratic equation in the 
third variable w = 2t/(O + 6). 

2w2 - ~ ( 3  + e  + 8/(8 + 2)) - (e + i)(e + 4) = 0. 

(e2 + 58 + 14 A 6) 

(62) 

A = 9e4 + 82e3 + 277e2 + 4288 + 324 (63) 

The pair of its roots 

w* = - 

may easily be analysed in both the limits 6' + 0 and 0 + 00. 

1 
4(e + 2) 

Insertions give the final couplings 

e* = [32(e+ i ) 2 ( e + z ) ( e + 6 ) ( f ~ + B 2 + 5 e +  1 4 ) / ( ~ ~ + 5 e 2 + 2 9 8 + 4 6 ) 2 ] 1 / 3  

(64) 
as well as the related parameter 

p+ = { izs(e + ] ) ( e  + 2 ~ /  [(*&+ 582 + 298 + 46) 
x ( * ~ ~ + 2 + 5 e + 1 4 ) ( e + ~ ) ] } ' ' ~ .  (65) 

The same change of variables (B. e )  + ( z ,  t )  also works in the N = 3 case-in the 
s-wave, we eliminate 

t = 12(9~ - 22)/Z(S - 32) 

3 1 5 ~ ~  - 3252z2+ 10384~ - 10560 = 0 

z = 6(34t - 63)/t(2t + 63) 

40t3 - 52t2 + 126r + 19 845 = 0. 

(66) 

(67) 

(68) 
and obtain the slightly simpler final secular equation 

(69) 
The unique and exact real root of this equation may still be written in a closed and compact 
form: 
t = - ( 6 3 ~ / 1 0 0 + 3 3 5 6 9 5 9 / 1 3 5 0 0 ) ' / 3  

and derive 

or, altematively, e l i n a t e  the second variable first, 

+ ( 6 3 ~ / 1 0 0 - 3 3 5 6 9 5 9 / 1 3 5 0 0 ) ' ~ +  13/30. (70) 
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5.2.4. Further simplifications and non-numerical constructions: N = 4 and N = 5. At 
N = 4 and I = 0, the change of variables p = z / e  and e = ( r ~ ~ ) ' / ~  still enables us to 
eliminate 

z = 576(8t2 + 671t + 7623)/(232t3 + 1476t2+ 1003862 + 1029 105) 

or, alternatively, 

(71) 

t = -33(501z2 - 39442 + 7424)/(363z3 - 3582' + 80482 + 3712). (72) 

The insertions of the functions z = z(2) or f = t ( z )  in complementary equations prove 
inequivalent, and the division of the resulting polynomial equations by the respective 
spurious factors 58t + 693 and 2t + 99 leads to the final secular equation 

- 26912t6 -3(648464rs+ 10430160t4+27009576t3 +606623094t2 

+ 686 001 3932 - 47 069 204 490) = 0 (73) 

(as well as to its t-alternative) of mere sixth order. 
The next, N = 5 s-wave choice of determinants 

0 = 46332p4e + p3(1287e3 - 216216) - 7776p2e2 

+ 2pe(35e3 - 8952) - 384e3 + 28800 (74) 

0 = 72072p4 + 17 160p3e2 + llpZe(13e3 - 12360) + SOOp(156 - e3) + 2ez(e3 - 696) 

requires the application of some new tricks: we remove z3 by subtraction, denote z2 as 
w and insert it back, whenever applicable, into one of the original equations. The result 
becomes linear in z and we may eliminate 

z = 1200t(16392r4+42652t3+ 1352650t2-51615135t -753647895)/0 

D = 317952t6 + 15508704t5+ 3 858016t't 66 109560t3 - 21 056323860? (75) 

- 237 039 654 852t + 522277 99 1 235 

necessarily by symbolic manipulations on a computer. The result-a 13th-order equation- 
has a real root t = 4.126607, 

In practice, several alternative unperturbed Q's  may be used. In particular, when we 
assume that f i  = 0 vanishes while x # 0 (i.e. the energy itself remains unrestricted), we 
may recall [231 and simplify y = 0. This enables us to reduce the Magyari equations to a 
polynomial of a low degree, namely linear at N = I ,  quadratic at N = 2, cubic at N = 3 
and of  the seventh degree at N = 4. Here, in our final example, let us f ix N = 5. 

/ e  -2 0 0 0 O \  
X 

-10 
0 
0 

e 
X 

-8 
0 
0 
0 

-6 
e 
X 

-6 
0 
0 

0 
- 12 

e 

-4 
0 

X 

0 
-20 0 

e 

-2 
X 

0 

e 
X 
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Again, an omission of (the third and fourth) rows gives a pair of determinantal equations 
which, after the changes of variable x = ( y  z')'P and e = (2 /y ) ' I 3 ,  acquire the form 

~ ' ( 8 2 ~  - 2642') + y(z3 - 7-42' - 29282 + 28800) + 62' - 3842 = 0 

24z2y3 + ~ ~ ( 2 0 2 ~  - 1 2 8 8 ~  + 9600) + Y(Z' - 402 - 1392) + 22 = 0. 
(77) 

We may use the first line in order to remove the thii power of y in the second line. Then, 
we subtract the new pair of equations (after having normalized to one the coefficients at, 
unusually, yo) and obtain a linear equation and formula 

(78) 
z 4  - 2042' + 11 4242' - 97 4882 - 3 934 656 

432" - 83642' + 534 144z2 - 12900096~ + 77414400 
y = - 2  

for y = y(x). Its insertion converts the remaining quadratic equation into the final single- 
variable secular equation of the eleventh degree, 

z ' l  -617z"+ 1 5 8 6 3 2 ~ ~  -22585440z8+ 1 9 8 1 7 3 0 3 0 4 ~ ~  - 112514572800~~ 

+ 4222916388 864z5 - 105488581 091 328z4 t 1750679680057 344z3 

- 18 938 384 468 213 7602' + 121 740 048 728 0640002 

- 324905635676160000 = 0. (79) 

Its numerical solution is standard, giving the (unique) approximate real root z = 6.48794. 
The related variable y = 0,591 66 and approximate 'physical'-real-quantities x = - E  = 
2.9203 and e = 2.221 66 follow. 

It is worth emphasizing that the direct use of the original variables in 1231 would only 
enable us to generate an analogue of the present equation (79) with some 18th-degree 
polynomial. 
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